## Shri Rawatpura Sarkar University, Raipur



# Examination Scheme & Syllabus

## of CBCS Pattern for

## **Master of Science in Physics**

## Semester-III

(Effective from the session: 2022-2023)



### Shri Rawatpura Sarkar University, Raipur Faculty of Science Department of Physics

#### Two Years Master of Science Program Scheme of Teaching & Examination M. Sc. in Physics Semester-III Outcome Based Education (OBE) & Choice Based Credit Systems (CBCS) (Effective from the Academic Year: 2022-2023)

|                    |                             |                                   | I | Hou<br>Wee | rs/<br>ek |            | Max                              | Sem End            |       |                           |  |
|--------------------|-----------------------------|-----------------------------------|---|------------|-----------|------------|----------------------------------|--------------------|-------|---------------------------|--|
| S. No. Course Code |                             | Course Title                      | L | LTI        |           | Cre<br>dit | Continu<br>ous<br>Evaluat<br>ion | Sem<br>End<br>Exam | Total | Exam<br>Duration<br>(Hrs) |  |
| 1.                 | SMS10301T                   | Nuclear And Particle Physics      | 4 | -          | -         | 4          | 30                               | 70                 | 100   | 3.0                       |  |
| 2.                 | SMS10302T                   | Solid State Physics-I             | 4 | -          | -         | 4          | 30                               | 70                 | 100   | 3.0                       |  |
| 2                  | SMS10331T                   | Solid State Physics - II          | 4 |            |           | 4          | 20                               | 70                 | 100   | 2.0                       |  |
| 5.                 | 3. SMS10332T                | Laser Physics and<br>Applications |   | -          | -         | 4          | 50                               |                    |       | 5.0                       |  |
| 4                  | SMS10333T                   | <b>Biological Physics</b>         | 4 |            |           | 4          | 20                               | 70                 | 100   | 2.0                       |  |
| 4.                 | SMS10334T                   | Physics of Nano-Materials         | 4 | -          | -         | 4          | 50                               | 70                 | 100   | 5.0                       |  |
| 5.                 | SMS10335T                   | Analog System and<br>Applications | 4 | _          | _         | 4          | 30                               | 70                 | 100   | 3.0                       |  |
|                    | SMS10336T                   | Astronomy and Astrophysics        |   |            |           |            |                                  |                    |       | 5.0                       |  |
| 6.                 | SMS10391P                   | Physics Lab course V              | - | -          | 4         | 2          | 15                               | 35                 | 50    | 5.0                       |  |
| 7.                 | SMS10392P                   | Physics Lab Course VI             | - | -          | 4         | 2          | 15                               | 35                 | 50    | 5.0                       |  |
|                    | Total teaching hrs/week: 28 |                                   |   |            |           | 24         | Total Ma                         | rks                | 600   |                           |  |



| Course Title        | Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Physics IX: NUCLEAR AND PARTICLE PHYSICS                                                                                                                                                                                                                                                                                |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Course Code         | SN                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SMS10301T                                                                                                                                                                                                                                                                                                               |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
| Course Credit       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Т                                                                                                                                                                                                                                                                                                                       | Р                               | тс                                                    |                                                                                                                                                                                                      |  |  |  |  |  |  |
| Course Credit       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                       | -                               | 4                                                     |                                                                                                                                                                                                      |  |  |  |  |  |  |
| Prerequisite        | Stı                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıdent                                                                                                                                                                                                                                                                                                                   | t mu                            | st have th                                            | he knowledge of nuclear and particle physics.                                                                                                                                                        |  |  |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • To study nuclear and particle physics in advance and establish foundation to research in the respective domain.                                                                                                                                                                                                       |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                         |                                 |                                                       | UNIT-I                                                                                                                                                                                               |  |  |  |  |  |  |
|                     | <b>Nuclear Interactions:</b> Nucleon-nucleon interaction, Two-nucleon system, The ground state of the deuteron, Tensor forces, Nucleon-nucleon scattering at low energy, Scattering length, Effective range theory, Spin dependence of nuclear forces, Charge independence and charge symmetry of nuclear forces, Iso-spin formalism, Exchange forces, Meson theory of nuclear forces and the Yukawa interaction                                           |                                                                                                                                                                                                                                                                                                                         |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                         |                                 |                                                       | UNIT-II                                                                                                                                                                                              |  |  |  |  |  |  |
|                     | Nu<br>Re<br>and<br>apj                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Nuclear Reactions:</b> Reaction energetics: Q-equation and threshold energies,<br>Reactions cross sections, Resonance: Breit-Wigner single-level formula, Direct<br>and compound nuclear reactions, Formal reaction theory: Partial wave<br>approach and phase shifts, Scattering matrix. Reciprocity theorem.       |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     | UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                         |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
| Course<br>Content   | <b>Nuclear Decay:</b> Beta decay, Shape of the beta spectrum and problems in conservation laws, Pauli's neutrino hypothesis, Femi's theory of beta decay, Total decay rate, Angular momentum and parity selection rules, Comparative half-lives, Allowed and forbidden transitions, Parity violation, Detection and properties of neutrino. Gamma decay, Multiple transitions in nuclei, Angular momentum and Parity selection rules, Internal conversion. |                                                                                                                                                                                                                                                                                                                         |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT–IV                                                                                                                                                                                                                                                                                                                 |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     | Nu<br>Ma<br>Sp<br>Ma<br>Ma                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Nuclear models:</b> Liquid drop model, Bohr-Wheeler theory of fission, Shell Model, Experimental evidence for shell effects, Single particle shell model, Spin-orbit interaction and magic numbers, Analysis of shell model predictions, Magnetic moments and Schmidt lines, Collective model of Bohr and Mottelson. |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT –V                                                                                                                                                                                                                                                                                                                 |                                 |                                                       |                                                                                                                                                                                                      |  |  |  |  |  |  |
|                     | Ele<br>ele<br>con<br>mo                                                                                                                                                                                                                                                                                                                                                                                                                                    | emen<br>men<br>nserv<br>odel,                                                                                                                                                                                                                                                                                           | ntary<br>tary<br>vatio:<br>Prop | y <b>particl</b><br>particle<br>n laws,<br>perties of | <b>e Physics:</b> The fundamental interactions, Classification of es, Leptons and Hadrons, Symmetries, groups and SU(2) and SU(3) multiplets and their properties, Quark Quarks, the standard model. |  |  |  |  |  |  |



| " WHITE BEAR HOUSE |                                                                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | • On the completion of this course, successfully student will be able to understand the development of the nuclear and particle physics.                                                    |
|                    | <ol> <li>The purpose of the course is to introduce students to knowledge about<br/>Nucleon-nucleon interaction, Effective range theory &amp; Meson theory of<br/>nuclear forces.</li> </ol> |
|                    | 2. The purpose of the course is to introduce students to learning about Q-equation and threshold energies.                                                                                  |
| Course<br>Outcome  | 3. The purpose of the course is to introduce students to introduction about<br>Beta decay, Shape of the beta spectrum and problems in conservation<br>laws.                                 |
|                    | 4. The purpose of the course is to introduce students to information about Liquid drop model & Bohr-Wheeler theory of fission.                                                              |
|                    | 5. The purpose of the course is to introduce students to knowledge about the fundamental interactions & Classification of elementary particles.                                             |
|                    | 6. Develop required classical phenomenon to solve problems in Nuclear Physics, Particle Physics and other fields of theoretical physics.                                                    |
| Text Books         | 1. Bohr and B.R. Mottelson, Nuclear structure, vol. 1 (1969) and vol.2, Benjamin, Reading, A, 1975.                                                                                         |
|                    | 2. Kenneth S. Krane, Introductory Nuclear Physics, Wiley, New York, 1988.                                                                                                                   |
|                    | 3. Ghoshal, Atomic and Nuclear Physics vol.2.                                                                                                                                               |
|                    | 4. P.H. Perking, Introduction to high energy physics, Addison-Wesley, London, 1982.                                                                                                         |
|                    | 5. Shriokov Yudin, Nuclear Physics vol.1 & 2, Mir Publishers, Moscow, 1982.                                                                                                                 |
|                    | 6. D. Griffiths, introduction to elementary particles, harper and row, New York, 1987.                                                                                                      |
|                    | 1. H.A. Enov, introduction to Nuclear Physics, Addison-Wesley, 1973.                                                                                                                        |
|                    | 2. G.E. Brown and A.D. Jackson, Nucleon-Nucleon interaction North-<br>halland Amsterdam, 1976.                                                                                              |
|                    | 3. S.D. Benedetti, Nuclear interaction, John Willey and sons, NewYork, 1964.                                                                                                                |
| Reference<br>Books | 4. M.K. Pal, theory of Nuclear structure, affiliated East West, Madras, 1982.                                                                                                               |
|                    | 5. Y.R. Waghmare, introductory nuclear physics, Oxford, IBH, Bombay, 1981.                                                                                                                  |
|                    | 6. J.M. Longo, elementary particles, McGraw Hill, New York, 1971.                                                                                                                           |
|                    | 7. R.R. Roy and B.P. Nigam, Nuclear Physics, Wiley-Easterm Ltd. 1983.                                                                                                                       |
|                    |                                                                                                                                                                                             |



|                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                                       |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------------------------------------|--|--|--|--|--|
| Course Title        | Physics X: SOLID STATE PHYSICS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                                       |  |  |  |  |  |
| Course Code         | SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SMS10302T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |                                       |  |  |  |  |  |
| Course Credit       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Р    | ТС       |                                       |  |  |  |  |  |
|                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -    | 4        |                                       |  |  |  |  |  |
| Prerequisite        | Stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ıden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ıt m | ust have | the knowledge of solid state physics. |  |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • To study solid state physics in advance and establish foundation to research in the respective domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |          |                                       |  |  |  |  |  |
|                     | Unit- I<br>Electrons in Solids and Electronic Properties: Energy bands: nearly free<br>electron model, origin of energy gap and its magnitude, Bloch function,<br>Kronig-Penny model, Wave equation of electron in periodic potential,<br>restatement of Bloch theorem, crystal moment of an electron, solution of<br>Central equation, Kronig-Penny model in reciprocal space, empty lattice<br>Approximation, approximate solution near zone boundary, Number of orbitals<br>in a band, metals and insulators. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                                       |  |  |  |  |  |
|                     | Unit -II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |          |                                       |  |  |  |  |  |
| Course              | Fe<br>ele<br>zo<br>op<br>co<br>su<br>Ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Fermi surfaces and metals:</b> Effect of temperature on F-D distribution, free electron gas in three dimension. Different zone schemes, reduced and periodic zones, construction of Fermi surfaces, nearly free electrons, electron, hole, open orbits, Calculation of energy bands, Tight binding, Wigner-Seitz, cohesive energy, pseudo potential methods. Experimental methods in Fermi surface studies, quantization of orbits in a magnetic field, de Haas van Alphen Effect, External orbits, Fermi surface of copper.                                                          |      |          |                                       |  |  |  |  |  |
| Content             | Cr<br>and<br>qu<br>by<br>co<br>im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit- III<br>Crystal vibration and thermal properties: Lattice dynamics in monoatomic<br>and diatomic lattice: two atoms per primitive basis, optical and acoustic modes,<br>quantization of elastic waves, phonon momentum, inelastic neutron scattering<br>by phonons, Anharmonic crystal interactions-thermal expansion, thermal<br>conductivity, thermal resistivity of phonon gas, umklapp processes,<br>imperfections.                                                                                                                                                             |      |          |                                       |  |  |  |  |  |
|                     | El<br>oc<br>fie<br>isc<br>tra<br>BC<br>suj<br>Vc                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imperfections.<br>Unit –IV<br>Electron-Phonon interaction- superconductivity: Experimental survey:<br>occurrence of superconductivity, Destruction of superconductivity by magnetic<br>field, Meissner effect, heat capacity, energy gap, MW, and IR properties,<br>isotope effect. Theoretical survey: thermodynamics of superconducting<br>transition, London equation, Coherence length, Cooper pairing due to phonons,<br>BCS theory of superconductivity, BCS ground state, flux quantization of<br>superconducting ring, duration of persistent currents, Type II superconductors, |      |          |                                       |  |  |  |  |  |



| antiprice game + Co |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                     | interference. High temperature superconductors, critical fields and currents,<br>Hall number, fullerenes ring.                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                     | Unit – V                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|                     | <b>Semiconductor crystals:</b> Band gap, equation of motion, physical derivation of equation of motion, holes, effective mass, physical interpretation of effective mass, effective masses of semiconductors Si and Ge, intrinsic carrier concentration, intrinsic mobility, impurity conductivity, donor and acceptor states, thermal ionization of donors and acceptors, thermo-electric effects. |  |  |  |  |  |  |  |  |
|                     | • On the completion of this course successfully student will be able to understand the development of the solid state physics.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|                     | 1. The purpose of the course is to introduce students to knowledge about<br>Energy bands: nearly free electron model, origin of energy gap and its<br>magnitude.                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Courso              | 2. The purpose of the course is to introduce students to learning about Effect of temperature on F-D distribution, free electron gas in three dimensions.                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Outcome             | 3. The purpose of the course is to introduce students to introduction about<br>Lattice dynamics in monoatomic and diatomic lattice: two atoms per<br>primitive basis.                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|                     | <ol> <li>The purpose of the course is to introduce students to information about<br/>Experimental survey: occurrence of superconductivity, Destruction of<br/>superconductivity by magnetic field &amp; Meissner effect.</li> </ol>                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                     | 5. The purpose of the course is to introduce students to knowledge about<br>Band gap, equation of motion and physical derivation of equation of<br>motion.                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|                     | 1. C. Kittel: Introduction to Solid State Physics (Wiley and Sons).                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Text books          | 2. J.M. Ziman: Principles of theory of solids (Cambridge Univ. Press).                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                     | 3. Azaroff: X-ray crystallography.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|                     | 4. Weertman and weertman : Elementary Dislocation Theory.                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| References          | 1. Verma and Srivastava: Crystallography for Solid State Physics.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Books               | 2. Azeroff and Buerger: The Power Method.                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|                     | 3. Buerger: Crystal Structure Analysis.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |



| Course Title        | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Major Elective I: Solid State Physics - II                                                                                                                                                                                                                                                                                                                                                                            |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Course Code         | SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SMS10303T                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                     | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Т                                                                                                                                                                                                                                                                                                                                                                                                                     | Р                                                        | ТС                                                      |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Course Credit       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                        | 4                                                       |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Prerequisite        | Stı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ıdent                                                                                                                                                                                                                                                                                                                                                                                                                 | mus                                                      | st have                                                 | e the knowledge of Solid State Physics.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • To study Solid State Physics in advance and establish foundation to research in the respective domain                                                                                                                                                                                                                                                                                                               |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                         | UNIT- I                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                     | Pla<br>Dis<br>Tra<br>osc<br>Mc<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Plasmons, Polaritons:</b> Dielectric function of the electron gas, Plasma optics<br>Dispersion relation for EM wave, Transverse optical modes in Plasma<br>Transparency of Alkali metals in the ultraviolet, Longitudinal Plasma<br>oscillations, Plasmon, electrostatic screening and screened Coulomb potential<br>Mott metal-insulator transition, screening and phonons in metals, Polaritons<br>LST relation. |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                     | UNIT –II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Course              | <b>Dielectric and ferroelectrics:</b> Maxwell's equations, polarization, macrosce<br>electric field, depolarization filed, E1;local electric field at an atom, Lor<br>filed E2, fields of dipoles inside cavity E3; dielectric constant<br>polarizability, electronic polarizability; structural phase transition; ferro-elec<br>crystals, classification; displacive transition, soft optical phonons, Lan<br>theory of phase transitions, first and second order transition, antife<br>electricity, ferro- electric domain, piezoelectricity, ferro-elasticity, op-<br>ceramics |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Content             | UNIT –III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                     | Ma<br>the<br>fiel<br>fac<br>der<br>cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | agnet<br>ory o<br>ld sp<br>tor, v<br>nagn<br>nduct                                                                                                                                                                                                                                                                                                                                                                    | tism<br>of pa<br>littin<br>van v<br>etiza<br>tion e      | : Gen<br>aramag<br>g, que<br>vleck<br>ation,<br>electro | heral ideas of diamagnetism and paramagnetism, quantum<br>gnetism, rare earth ions, Hund rule, iron group ions, crystal<br>enching of orbital angular momentum, spectroscopic splitting<br>temperature dependent paramagnetism, Cooling by isentropic<br>nuclear demagnetization, paramagnetic Susceptibility of<br>ons.                                                                 |  |  |  |  |  |  |
|                     | UNIT –IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                     | Fen<br>and<br>ma<br>exc<br>ten<br>sus<br>dor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrom<br>d exc<br>gneticitation<br>p an<br>ceptimains                                                                                                                                                                                                                                                                                                                                                                  | hang<br>hang<br>izatio<br>on or<br>nd su<br>ibilit<br>s. | etism<br>ge inte<br>on at<br>f mag<br>scept:<br>y bel   | and anti-ferromagnetism: Ferromagnetic order, Curie point<br>agral, temp dependence of saturation magnetization, saturation<br>absolute zero; magnons, quantization of spin waves, thermal<br>nons; neutron magnetic scattering, Ferrimagnetic order, Curie<br>ibility of ferrimagnets, iron garnets. Antiferromagnetic order,<br>ow neel temp, antiferromagnetic magnons, ferromagnetic |  |  |  |  |  |  |



#### Master of Science in Physics Semester-III 2022-2023

|            | UNII - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | <b>Optical Processes &amp; Excitons and defects:</b> Optical reflectance, excitons,<br>Frenkel and Mott-Wannier excitons, Alkali Halides and Molecular crystals<br>Defects: lattice vacancies, Schottkey and Frenkel point effects, colour centers, F<br>and other centres, Line defect. Shear strength of single crystals, dislocations-<br>edge and screw dislocations, Burger vectors, Stress fields of dislocations, low<br>angle grain boundaries, dislocation densities, dislocation multiplication and slip,<br>strength of alloys, dislocations and crystal growth, hardness of materials. |  |  |  |  |  |  |  |
|            | <ul> <li>On the completion of this course successfully student will be able to understand the development of the Solid State Physics - II.</li> <li>1. The purpose of the course is to introduce students to knowledge about</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|            | Dielectric function of the electron gas & Plasma optics.<br>2 The purpose of the course is to introduce students to learning about                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Course     | Maxwell's equations, polarization, macroscopic electric field, depolarization filed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Outcome    | 3. The purpose of the course is to introduce students to introduction about General ideas of diamagnetism and Para magnetism.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|            | 4. The purpose of the course is to introduce students to information about<br>Ferromagnetic order, Curie point and exchange integral, temp<br>dependence of saturation magnetization.                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|            | 5. The purpose of the course is to introduce students to knowledge about<br>Optical reflectance, excitons, Frenkel and Mott-Wannier excitons,<br>Alkali Halides and Molecular crystals Defects.                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|            | 1. C. Kittel: Introduction to Solid State Physics (Wiley and Sons).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Text Books | 2. J.M. Ziman: Principles of theory of solids (Cambridge Univ. Press).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|            | 3. Azaroff: X-ray crystallography.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|            | 4. Weertman: Elementary Dislocation Theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| References | 1. Verma and Srivastava: Crystallography for Solid State Physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Books      | 2. Azeroff and Buerger: The Power Method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|            | 3. Buerger: Crystal Structure Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |



| Course Title        | M                                                                                                                                                                                                                                                                                                                                                                                    | Major Elective I: Laser Physics and Applications                                                                                                                                                                                                                                                                                                                                                                 |               |                      |                                                                                      |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| Course Code         | SN                                                                                                                                                                                                                                                                                                                                                                                   | SMS10303T                                                                                                                                                                                                                                                                                                                                                                                                        |               |                      |                                                                                      |  |  |  |  |  |
| Course Credit       | L                                                                                                                                                                                                                                                                                                                                                                                    | Т                                                                                                                                                                                                                                                                                                                                                                                                                | Р             | тс                   |                                                                                      |  |  |  |  |  |
|                     | 4                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                | -             | 4                    |                                                                                      |  |  |  |  |  |
| Prerequisite        | Stı                                                                                                                                                                                                                                                                                                                                                                                  | ıdent                                                                                                                                                                                                                                                                                                                                                                                                            | mus           | st have tl           | ne knowledge of Laser Physics and Applications.                                      |  |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                    | To<br>four                                                                                                                                                                                                                                                                                                                                                                                                       | stuc<br>ndati | ly Lase<br>on to res | r Physics and Applications in advance and establish search in the respective domain. |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      | UNIT-I                                                                               |  |  |  |  |  |
|                     | La<br>qua<br>mo<br>Ba<br>las<br>qua                                                                                                                                                                                                                                                                                                                                                  | <b>Laser Characteristics:</b> Spontaneous and stimulated emission, Einstein's quantum theory of radiation, theory of some optical processes, coherence and monochromacity, kinetics of optical absorption, line broadening mechanism, Basic principle of lasers, population inversion, laser pumping, two & three level laser systems, resonator, Q-factor, losses in cavity, threshold condition, quantum yield |               |                      |                                                                                      |  |  |  |  |  |
|                     | UNIT–II                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
|                     | <b>Laser Systems:</b> Solid state lasers- the ruby laser, Nd:YAG laser, ND: Glass laser, semiconductor lasers – features of semiconductor lasers, intrinsic semiconductor lasers, Gas laser - neutral atom gas laser, He-Ne laser, molecular gas lasers, CO2 laser, Liquid lasers, dve lasers and chemical laser.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
|                     | UNIT-III                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
| Course<br>Content   | Advances in Laser Physics: Production of giant pulse -Q-switching, giant pulse dynamics, laser amplifiers, mode locking and pulling, Non-linear optics, Harmonic generation, second harmonic generation, Phase matching, third harmonic generation, optical mixing, parametric generation and self-focusing of light.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
|                     | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
|                     | <b>Multi-Photon Processes:</b> multi-quantum photoelectric effect, Theory of two-<br>photon process, three- photon process, second harmonic generation, parametric<br>generation of light, Laser spectroscopy: Rayleigh and Raman scattering,<br>Stimulated Raman effect, Hyper-Raman effect, Coherent anti-stokes Raman<br>Scattering, Photo-acoustic Raman spectroscopy.           |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                      | UNIT–V                                                                                                                                                                                                                                                                                                                                                                                                           |               |                      |                                                                                      |  |  |  |  |  |
|                     | <b>Laser Applications:</b> ether drift and absolute rotation of the Earth, isotope separation, plasma, thermonuclear fusion, laser applications in chemistry, biology, astronomy, engineering and medicine. Communication by lasers: ranging, fiber Optics Communication, Optical fiber, numerical aperture, propagation of light in a medium with variable index, pulse dispersion. |                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                      |                                                                                      |  |  |  |  |  |

| SRU<br>SRU | Master of Science in Physics<br>Semester-III<br>2022-2023                                                                                                                        |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | • On the completion of this course, successfully student will be able to understand the development of the Laser Physics and Applications.                                       |
|            | 1. The purpose of the course is to introduce students to knowledge about Spontaneous and stimulated emission, Einstein's quantum theory of radiation.                            |
| Course     | 2. The purpose of the course is to introduce students to learning about Solid state lasers- the ruby laser, Nd:YAG laser, ND & Glass laser.                                      |
| Outcome    | 3. The purpose of the course is to introduce students to introduction about Production of giant pulse -Q-switching, giant pulse dynamics.                                        |
|            | 4. The purpose of the course is to introduce students to information about multi-quantum photoelectric effect, Theory of two-photon process.                                     |
|            | 5. The purpose of the course is to introduce students to knowledge about<br>ether drift and absolute rotation of the Earth, isotope separation, plasma,<br>thermonuclear fusion. |
|            | 1. Laud, B.B.: Lasers and nonlinear optics, (New Age Int.Pub.1996).                                                                                                              |
| Text Decks | 2. Thyagarajan, K and Ghatak, A.K.: Lasers theory and applications (Plenum press, 1981).                                                                                         |
| Text Dooks | 3. Ghatak, A.K. and Thyagarajan, K: Optical electronics (Cambridge Univ. Press 1999).                                                                                            |
|            | 4. Seigman, A.E.: Lasers (Oxford Univ. Press 1986)                                                                                                                               |
|            | 1. Maitland, A. and Dunn, M.H.: Laser Physics (N.H. Amsterdam, 1969).                                                                                                            |
| References | 2. Hecht, J. The laser Guide book (McGraw Hill, NY, 1986).                                                                                                                       |
| Books      | 3. Demtroder, W.: Laser Spectroscopy (Springe series in chemical physics vol.5, Springe verlag, Berlin, 1981).                                                                   |
|            | 4. Harper, P.G. and Wherrett B.S. (Ed.): Non-linear-optics (Acad. press, 1977).                                                                                                  |

| Title         | Ma                                                                             | Major Elective II: Biological Physics |              |    |  |  |  |  |
|---------------|--------------------------------------------------------------------------------|---------------------------------------|--------------|----|--|--|--|--|
| Code          | SN                                                                             | <b>1S1</b> 0                          | <b>304</b> ′ | Г  |  |  |  |  |
|               | L                                                                              | Т                                     | Р            | TC |  |  |  |  |
| Course Credit | 4                                                                              | 0                                     | 0            | 4  |  |  |  |  |
| Prerequisite  | Pre                                                                            | Preliminary Knowledge of Physics.     |              |    |  |  |  |  |
| Course        | To study Biological Physics in advance and establish foundation to research in |                                       |              |    |  |  |  |  |



| Objective          | the respective domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | <b>UNIT-I</b><br>The boundary, interior and exterior environment of living cells. Processes:<br>exchange of matter and energy with environment, metabolism, maintenance,<br>reproduction, evolution. Self-replication as a distinct property of biological<br>systems. Time scales and spatial scales. Universality of microscopic processes<br>and diversity of macroscopic form. Types of cells. Multicellularity. Allometric<br>scaling laws.                                                                                                                                                                                            |
|                    | <b>UNIT-II</b><br>Metabolites, proteins and nucleic acids. Their sizes, types and roles in structures<br>and processes. Transport, energy storage, membrane formation, catalysis,<br>replication, transcription, translation, signaling. Typical populations of<br>molecules of various types present in cells, their rates of production and<br>turnover. Energy required to make a bacterial cell. Simplified mathematical<br>models of transcription and translation, small genetic circuits and signaling<br>pathways. Random walks and applications to biology. Mathematical models to<br>be studied analytically and computationally. |
| Course<br>Contents | <b>UNIT-III</b><br>At the level of a cell: The numbers of distinct metabolites, genes and proteins in<br>a cell. Complex networks of molecular interactions: metabolic, regulatory and<br>signaling networks. Dynamics of metabolic networks; the stoichiometric matrix.<br>Living systems as complex organizations; systems biology. Models of cellular<br>dynamics. The implausibility of life based on a simplified probability estimate,<br>and the origin of life problem. At the level of a multicellular organism:<br>Numbers and types of cells in multicellular organisms.                                                         |
|                    | <b>UNIT-IV</b><br>Cell types as distinct attractors of a dynamical system. Stem cells and cellular differentiation. Pattern formation and development. Brain structure: neurons and neural networks. Brain as an information processing system. Associative memory models. Memories as attractors of the neural network dynamics. At the level of an ecosystem and the biosphere: Food webs. Feedback cycles and self - sustaining ecosystems.                                                                                                                                                                                              |
|                    | <b>UNIT-V</b><br>The mechanism of evolution: variation at the molecular level, selection at the level of the organism. Models of evolution. The concept of genotype-phenotype map. Examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | • On the completion of this course successfully student will be able to understand the development of the Biological Physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Course<br>Outcome  | 1. The purpose of the course is to introduce students to knowledge about the boundary, interior and exterior environment of living cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 2. The purpose of the course is to introduce students to learning about Metabolites, proteins and nucleic acids. Their sizes, types and roles in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Selection anony second a state | 2022-2023                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | structures and processes.                                                                                                                                                                                                                                                                                                                          |
|                                | 3. The purpose of the course is to introduce students to introduction about the numbers of distinct metabolites, genes and proteins in a cell.                                                                                                                                                                                                     |
|                                | 4. The purpose of the course is to introduce students to information about<br>Cell types as distinct attractors of a dynamical system. Stem cells and<br>cellular differentiation.                                                                                                                                                                 |
|                                | 5. The purpose of the course is to introduce students to knowledge about the mechanism of evolution.                                                                                                                                                                                                                                               |
| Text Books                     | <ol> <li>Physics in Molecular Biology; Kim Sneppen &amp; Giovanni Zocchi (CUP 2005)</li> <li>Biological Physics: Energy, Information, Life; Philip Nelson (W H Freeman &amp; Co, NY, 2004)</li> </ol>                                                                                                                                              |
| References<br>Books            | <ol> <li>Physical Biology of the Cell (2nd Edition), Rob Phillips et al (Garland<br/>Science, Taylor &amp; Francis Group, London &amp; NY, 2013)</li> <li>An Introduction to Systems Biology; Uri Alon (Chapman and Hall/CRC,<br/>Special Indian Edition, 2013)</li> <li>Evolution; M. Ridley (Blackwell Publishers, 2009, 3rd edition)</li> </ol> |

| Course Title        | M                            | Major Elective II: Physics of Nano-Materials                                                                                                                                                                                                                                                                                                                                                                                                                        |     |         |                                               |
|---------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------------------------------------------|
| Course Code         | SMS10304T                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         |                                               |
| Course Credit       | L                            | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Р   | тс      |                                               |
| Course Crean        | 4                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -   | 4       |                                               |
| Prerequisite        | Stu                          | ıdent                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mus | st have | e the knowledge of Physics of Nano-Materials. |
| Course<br>Objective | •                            | • To study Physics of Nano-Materials in advance and establish foundation to research in the respective domain                                                                                                                                                                                                                                                                                                                                                       |     |         |                                               |
| Course<br>Content   | Na<br>mo<br>clu<br>mo<br>gla | UNIT I<br>Nano Materials: Properties of Nano-Particles: Metal nano-clusters, theoretical<br>modeling of nanoparticles, geometric and electronic structure, magnetic<br>clusters, Semiconductor nanoparticles, optical properties, rare gas and<br>molecular clusters, Bulk nano-structured materials: Solid disordered<br>nanostructures, methods of synthesis, properties, nano-cluster composite<br>glasses, porous silicon, nano structured crystals.<br>UNIT II |     |         |                                               |



Course

Outcome

#### Master of Science in Physics Semester-III 2022-2023

carbon, structure and properties of  $C_{60}$ , graphene, carbon nanotubes and its types, laser vaporization techniques, arc discharge method and chemical deposition technique, purification techniques, Properties of Carbon Nanotubes and Graphene: Optical, electrical, electronic, mechanical, thermal, optical, and vibrational properties.

#### UNIT III

**Synthesis of Nano-Materials:** Top-down & Bottom-up approaches: Formation of nanostructures by mechanical milling (ball milling) and mechanical attrition, Chemical Vapor Deposition (CVD), Physical Vapour Deposition (PVD), thermal and e beam evaporation, Pulsed Laser Ablation (PLD). Chemical Routes for synthesis of Nanomaterials: Chemical precipitation and co-precipitation, chemical bath deposition (CBD), Sol-gel synthesis, Microemulsions or reverse micelles, Solvothermal synthesis, Thermolysis routes and spray pyrolysis.

#### UNIT IV

**Characterization of Nano-materials (a):** X-ray Diffraction (XRD), powder and single crystal Diffraction, X-ray fluorescence (XRF), X ray photoelectron spectroscopy (XPS), Energy Dispersive X-ray analysis (EDAX), Extended X ray absorption and fluorescence spectroscopy (EXAFS), Dispersive high pressure XRD and Diamond anvil cells (DAC). Nuclear Magnetic Resonance (NMR) and Raman spectroscopy: description and analysis. Surface analysis methods: Secondary ion mass spectroscopy (SIMS), Auger Electron Spectroscopy, ESCA, Deep Level Transient Spectroscopy (DL TS), Thermo Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Differential Thermal Analysis.

#### UNIT V

Characterization of Nano-materials (b): Scanning Tunneling Microscopy (STM), Contact and non-contact Atomic Force Microscopy (AFM), Magnetic Force Microscopy (MFM), Nano indentation. Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), High resolution TEM Field Electron Energy Loss Spectroscopy (EELS). emission SEM. Spectrophotometry: UV-Vis spectrophotometers, IR spectrophotometers, Fourier Transform Infrared Radiation (FTIR), Photoluminescence (PL), electroluminescence and thermoluminescence spectroscopy, Near-field Scanning Optical Microscopy (NSOM).

- On the completion of this course successfully student will be able to understand the development of the Physics of Nano-Materials.
  - 1. The purpose of the course is to introduce students to knowledge about Properties of Nano-Particles: Metal nano-clusters, theoretical modeling of nanoparticles.
- 2. The purpose of the course is to introduce students to learning about Nature of carbon bonds, different allotropies of carbon, structure and properties of  $C_{60}$ .
  - 3. The purpose of the course is to introduce students to introduction about



|                     | Top-down & Bottom-up approaches: Formation of nanostructures by mechanical milling (ball milling) and mechanical attrition.                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 4. The purpose of the course is to introduce students to information about X-ray Diffraction (XRD), powder and single crystal Diffraction, X-ray fluorescence (XRF), X ray photoelectron spectroscopy (XPS). |
|                     | 5. The purpose of the course is to introduce students to knowledge about<br>Scanning Tunneling Microscopy (STM), Contact and non-contact<br>Atomic Force Microscopy (AFM).                                   |
|                     | <ol> <li>Nano materials: Synthesis properties, characterization and application:<br/>A.S Edelstein and R.C. Cammaratra</li> </ol>                                                                            |
|                     | 2. Introduction to Nanotechnology: Charles P. Poole Jr and Franks J. Qwens.                                                                                                                                  |
|                     | 3. Nanotechnology, Kohlr, Michael.                                                                                                                                                                           |
| Text Books          | 4. Nanoelectronics and Nanosystems, Karl Goser, Peter Glosekotter, Jan Dienstuhl, Springer, 2004                                                                                                             |
|                     | 5. Handbook of Analytical instruments, R.S. Khandpur                                                                                                                                                         |
|                     | 6. X-ray diffraction procedures, H. P. Klung and L.E.Alexander                                                                                                                                               |
|                     | 7. The Powder Method IV. Azaroff and M. J. Buerger                                                                                                                                                           |
|                     | 8. Elements of X-ray diffraction, B. D.Cullity                                                                                                                                                               |
|                     | 1. Differential Thermal Analysis, R.C. Mackenzie                                                                                                                                                             |
|                     | 2. Thermal Methods of Analysis, W.W. Wendlandt                                                                                                                                                               |
|                     | 3. Synthesis, Functionalization and Surface treatment of Nanoparticles:Maric Isbella and Buraton                                                                                                             |
|                     | 4. Encyclopedia of Nanotechnology, H.S. Nalwa                                                                                                                                                                |
|                     | 5. Nanomaterial Systems Properties and Application, A.S. Eldestein and R.C. Cammarata.                                                                                                                       |
| References<br>Books | 6. Handbook of Nanotechnology: Bhushan (Ed), Springer Verlag, New York (2004).                                                                                                                               |
|                     | 7. Nanostructures and Nanomaterials- Synthesis properties and Applications by Guozhong Cao (Empirical College Press World Scientific Pub., 2004).                                                            |
|                     | 8. Nanocomposite Science and Technology, Ajayan, Schadler and Braun                                                                                                                                          |
|                     | 9. Fullerene & Carbon nanotubes, Dressel Shaus                                                                                                                                                               |
|                     | 10. Carbon Nanotubes, Elizer                                                                                                                                                                                 |
|                     | 11. Physical properties of CNT, Saito Carbon nanotechnology, Liming Dai                                                                                                                                      |



| Course Title        | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Major Elective III: Analog System and Applications                                                                                                                                                                |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Course Code         | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMS10305T                                                                                                                                                                                                         |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Course              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Т                                                                                                                                                                                                                 | Р                                 | тс                               |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Credit              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                 | 0                                 | 4                                |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Prerequisite        | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Preliminary Knowledge of Physics.                                                                                                                                                                                 |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • To study Physics in advance and establish foundation to research in the respective domain.                                                                                                                      |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | UNIT-I<br>Semiconductor Diodes: P and N type semiconductors. Energy Level Dia<br>Conductivity and Mobility, Concept of Drift velocity. PN Junction Fab<br>(Simple Idea). Barrier Formation in PN Junction Diode. Static and D<br>Resistance. Current Flow Mechanism in Forward and Reverse Biased<br>Derivation for Barrier Potential, Barrier Width and Current for Step Junc<br>UNIT-II                                                                                              |                                                                                                                                                                                                                   |                                   |                                  | <b>UNIT-I</b><br>addes: P and N type semiconductors. Energy Level Diagram.<br>Mobility, Concept of Drift velocity. PN Junction Fabrication<br>rrier Formation in PN Junction Diode. Static and Dynamic<br>at Flow Mechanism in Forward and Reverse Biased Diode.<br>there Potential, Barrier Width and Current for Step Junction.<br><b>UNIT-II</b> |  |  |  |  |  |
| Course<br>Content   | <b>Two-terminal Devices and their Applications:</b> Rectification, Rectifier Diode:<br>Half-wave Rectifiers, Full wave Rectifiers and Bridge Rectifiers, Calculation of<br>Ripple factor and Rectification efficiency, Filter Circuits, Series inductor filter,<br>Shunt capacitor filter, L section filter and $\pi$ section filter, Zener Diode and<br>Voltage Regulation, Tunnel Diode. Principle and structure of LEDs, Photodiode<br>and Solar Cell.                              |                                                                                                                                                                                                                   |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | UNIT-III<br>Bipolar Junction transistors: NPN and PNP Transistors. Characteristics of CB,<br>CE and CC Configurations. Current amplification factors, Relations between<br>Current gains $\alpha$ , $\beta$ and $\gamma$ . Active, Cutoff and Saturation Regions.<br>Amplifiers: Bipolar transistor as amplifier, classification of amplifier, Common<br>base transistor amplifier, Common emitter transistor amplifier, Common<br>collector transistor amplifier, Feedback amplifier. |                                                                                                                                                                                                                   |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                   |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | <b>Sinusoidal Oscillators:</b> Principle of feedback in amplifier, Advantage negative feedback, Transistor as an oscillator, Principle of an oscillator an Bark-Hausen condition, Requirement for an oscillator, Classification oscillator, Application of oscillator, Wein bridge oscillator, Hartley oscillators.                                                                                                                                                                    |                                                                                                                                                                                                                   |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LINIT-V                                                                                                                                                                                                           |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | <b>Op</b><br>Pra<br>Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Operational Amplifiers (Black Box approach):</b> Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of virtual ground. |                                   |                                  |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                     | Ap<br>Ad<br>Zer<br>Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | plica<br>der, (<br>o cro<br>nvers                                                                                                                                                                                 | tions<br>(3) S<br>ossing<br>sion: | of (<br>ubtrac<br>detec<br>Resis | <b>Op-Amps:</b> (1) Inverting and non-inverting amplifiers, (2)<br>etor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7)<br>etor (8) Wein bridge oscillator.<br>stive network (Weighted and R-2R Ladder). Accuracy and                                                                                                                   |  |  |  |  |  |



| WINDIN STATE STATES |                                                                                                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Resolution. A/D Conversion (successive approximation).                                                                                                                                |
|                     | • On the completion of this course, successfully student will be able to understand the development of the Physics.                                                                   |
|                     | <ol> <li>The purpose of the course is to introduce students to knowledge about P<br/>and N type semiconductors &amp; Energy Level Diagram.</li> </ol>                                 |
|                     | 2. The purpose of the course is to introduce students to learning about Rectification, Rectifier Diode: Half-wave Rectifiers, Full wave Rectifiers and Bridge Rectifiers.             |
| Course<br>Outcome   | 3. The purpose of the course is to introduce students to introduction about NPN and PNP Transistors. Characteristics of CB, CE and CC Configurations & Current amplification factors. |
|                     | 4. The purpose of the course is to introduce students to information about<br>Principle of feedback in amplifier, Advantage of negative feedback,<br>Transistor as an oscillator.     |
|                     | 5. The purpose of the course is to introduce students to knowledge about<br>Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop<br>and Closed-loop Gain.             |
|                     | 1. Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-                                                                                                                |
|                     | <ol> <li>Biggin Finition</li> <li>Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall</li> </ol>                                                              |
| Text books          | <ol> <li>Solid State Electronic Devices, B.G. Streetman &amp; S.K. Banerjee, 6th<br/>Edn.,2009, PHI Learning</li> </ol>                                                               |
|                     | 4. Electronic Devices & circuits, S. Salivahanan & N.S. Kumar, 3rd Ed.,                                                                                                               |
|                     | <ul> <li>5. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall</li> </ul>                                                                        |
|                     | 1. Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014 6th Edn. Oxford University Press                                                                           |
| References          | <ol> <li>2014, our Edil., Oxford University Press.</li> <li>Electronic circuits: Handbook of design &amp; applications, U. Tietze, C.S chenk.2008. Springer</li> </ol>                |
| DUUKS               | 3. Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002 Wiley India                                                                                                 |
|                     | 4. Microelectronic Circuits, M.H. Rashid, 2nd Edition, Cengage Learning                                                                                                               |
|                     | 5. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India                                                                                                                       |



| Course Title        | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Elective III: Astronomy & Astrophysics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |    |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|--|--|--|--|
| Course Code         | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SMS10305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |    |  |  |  |  |
| Course              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р | тс |  |  |  |  |
| Creuit              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 | 4  |  |  |  |  |
| Prerequisite        | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preliminary Knowledge of Physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |    |  |  |  |  |
| Course<br>Objective | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • To study Astronomy & Astrophysics in advance and establish foundation to research in the respective domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |    |  |  |  |  |
| Course<br>Contents  | Unit – I<br>Stars-apparent magnitudes, Colour index, Spectral classification, Stellar<br>distances, Absolute magnitude, The H-R diagram of stars.<br>Stellar interiors: The basic equations of stellar structure, Hydrostatic<br>equilibrium, Thermal equilibrium, Virial Theorem, Energy sources, Energy<br>transport by radiation and convection, Equation of state<br>Unit – II<br>Formation and evolution of stars: Inter stellar dust and gas, Formation of<br>protostars, Pre-main sequence evolution, Post main sequence evolution and<br>Evolution on the main sequence for low and high mass stars, Late stages of<br>evolution, Fate of massive stars, Supernovae and its characteristics.<br>Unit – III<br>End states of stars, Electron degeneracy pressure, White dwarfs, and<br>Chandrasekhar limit, Neutron stars and Pulsars, Black holes. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    |  |  |  |  |
|                     | Unit– IV<br>Solar Physics: Physical Characteristics of sun, Photosphere: Limb darkening,<br>Granulation, Faculae, Solar Chromosphere and Corona, Prominences, Solar<br>Cycle and Sunspots, Solar Magnetic Fields, Theory of Sunspots, Solar flares,<br>solar wind, Helioseismology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |    |  |  |  |  |
|                     | Kej<br>vele<br>dia<br>Vai<br>mea<br>pho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | solar wind, Helioseismology.<br>Unit – V<br>Kepler's law and its implication to Binary Stars, Doppler Effect and its use in<br>velocity measurement e.g. rotation of Saturn and its Ring, determination of<br>velocity of galaxies, Hubble's law and Age of the Universe, Star clusters, HR<br>diagram of star clusters, distance and age determination through HR diagram.<br>Variable stars, Cepheid Variables, Period Luminosity relation and Distance<br>measurement. Period, dispersion and distance of the Pulsars. Photometer and<br>photoelectric photometry. |   |    |  |  |  |  |



| Contract States States |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcome      | <ul> <li>On the completion of this course, successfully student will be able to understand the development of the Astronomy &amp; Astrophysics.</li> <li>1. The purpose of the course is to introduce students to knowledge about Stars-apparent magnitudes, Colour index &amp; Spectral classification.</li> <li>2. The purpose of the course is to introduce students to learning about Formation and evolution of stars: Inter stellar dust and gas.</li> <li>3. The purpose of the course is to introduce students to introduction about End states of stars, Electron degeneracy pressure, White dwarfs, and Chandwardbara limit</li> </ul>                     |
|                        | <ul> <li>4. The purpose of the course is to introduce students to information about Solar Physics: Physical Characteristics of sun.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | 5. The purpose of the course is to introduce students to knowledge about Kepler's law and its implication to Binary Stars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Text books             | <ol> <li>Astrophysics for Physicists, Arnab Rai Choudhuri, Camb. University Press, 2010.</li> <li>Astrophysics: Stars and Galaxies, K.D. Abhayankar, Universities Press (India) Ltd, 2001.</li> <li>An Introduction to Astrophysics, Baidyanath Basu, PHI, 2010.</li> <li>Modern Astrophysics, B.W. Carroll and D.A. Ostlie, Addison-Wealey, 2007.</li> <li>Introductory Astronomy and Astrophysics, M.Zeilik and S.A. Gregory, 4th ed., Saunders College Publishing, 1998.</li> </ol>                                                                                                                                                                               |
| References<br>Books    | <ol> <li>The Physical Universe: An introduction to astronomy, F.Shu, University<br/>Science Books 1982.</li> <li>Textbook of astronomy and astrophysics with elements of cosmology,<br/>V.B. Bhatia, Narosa Publishing House, 2000.</li> <li>The new cosmos, A. Unsold and B. Baschek, Newyork, Springer 2002.</li> <li>Theoretical Astrophysics, vol. I: Astrophysical Processes T.<br/>Padmanabhan, Cambridge University Press, 2000.</li> <li>Theoretical Astrophysics, vol II: Stars and stellar systems, T.<br/>Padmanabhan, Cambridge University Press 2001.</li> <li>A Workbook for Astronomy, Jerry Waxman, Cambridge University Press,<br/>1984.</li> </ol> |



| Course Title        | Physics Lab Course V                                |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| Course Code         | SMS10391P                                           |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | L                                                   | Т                                                                                                                               | Р      | тс               |                                                               |  |  |  |  |  |  |
| Course Credit       | -                                                   | -                                                                                                                               | 2      | 2                |                                                               |  |  |  |  |  |  |
| Prerequisite        | Stu                                                 | Student must have the knowledge of Physics.                                                                                     |        |                  |                                                               |  |  |  |  |  |  |
| Course<br>Objective | •                                                   | • To enable the students to develop skills Electronics Lab.                                                                     |        |                  |                                                               |  |  |  |  |  |  |
|                     |                                                     | 1. Ez                                                                                                                           | xperii | nents            | with Microprocess or.                                         |  |  |  |  |  |  |
|                     |                                                     |                                                                                                                                 | (a     | ) Con            | vert BCD in to binary & vice versa.                           |  |  |  |  |  |  |
|                     |                                                     |                                                                                                                                 | (t     | ) To ti<br>locat | ansfer group of data blocks from one location to another ion. |  |  |  |  |  |  |
|                     |                                                     |                                                                                                                                 | (0     | e) To v          | rite program for addition & subtraction.                      |  |  |  |  |  |  |
|                     | (d) To write program for multiplication & division. |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 2. Logic gate study DTL & RTL.                      |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 3. To study & verify the De-Morgan's Theorem.       |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 4. Study of Adder/ Subtractor.                      |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 5. Study of Encoder & Decoder.                      |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
| Course              | 6. Study of Multiplexer & Demultiplexer             |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
| Content             | 7. Study of digital to analog converter.            |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     |                                                     | 8. Study of analog to digital converter.                                                                                        |        |                  |                                                               |  |  |  |  |  |  |
|                     |                                                     | 9. Study of 4-bit Counter/ ripple Counter.                                                                                      |        |                  |                                                               |  |  |  |  |  |  |
|                     |                                                     | 10. Study of left/right shift register.                                                                                         |        |                  |                                                               |  |  |  |  |  |  |
|                     | 11. Study of read only memory.                      |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 12. Study of Random Access Memory.                  |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 13. Study of Phase locked loop.                     |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 14. Study of BCD to seven segment Decoder.          |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     | 15. Study of modulation & demodulation.             |                                                                                                                                 |        |                  |                                                               |  |  |  |  |  |  |
|                     |                                                     | 16. O                                                                                                                           | ptical | fiber            | pased experiment.                                             |  |  |  |  |  |  |
|                     |                                                     | 17. M                                                                                                                           | licrov | vave ch          | naracterization and measurements.                             |  |  |  |  |  |  |
| Course<br>Outcome   |                                                     | • On the completion of this course lab, successfully student will be able to understand the development of the Electronics Lab. |        |                  |                                                               |  |  |  |  |  |  |
| Text Books          |                                                     | 1. In                                                                                                                           | trodu  | ction t          | o Physics Lab - H.E. White (T).                               |  |  |  |  |  |  |



| 20. anny group golden . |                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------|
|                         | 2. Fundamentals of Physics Lab – C.N. Banwell and E.M McCash(T).                                                 |
| References<br>Books     | <ol> <li>Introduction to Physics Lab – J.M. Brown.</li> <li>Fundamentals of Physics Lab –P.F. Bemath.</li> </ol> |



| Course Title                                                                                     | Ph                                                                                                                                                                                                                                                                  | Physics Lab Course VI                                                                                                                   |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Course Code                                                                                      | SMS10392P                                                                                                                                                                                                                                                           |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
| Course Credit                                                                                    | L                                                                                                                                                                                                                                                                   | Т                                                                                                                                       | Р                                                                           | ТС                                 |                                                                                        |  |  |  |  |  |  |
|                                                                                                  | -                                                                                                                                                                                                                                                                   | -                                                                                                                                       | 2                                                                           | 2                                  |                                                                                        |  |  |  |  |  |  |
| Prerequisite                                                                                     | Stı                                                                                                                                                                                                                                                                 | ıden                                                                                                                                    | ıt m                                                                        | ust have                           | the knowledge of Physics.                                                              |  |  |  |  |  |  |
| Course<br>Objective                                                                              |                                                                                                                                                                                                                                                                     | •                                                                                                                                       | То                                                                          | enable t                           | he students to develop skills Materials Science & General.                             |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 1.                                                                                                                                      | To<br>dep                                                                   | determin<br>bended c               | ne activation energy of ionic/superionic solid by Temperature onductivity measurement. |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 2.                                                                                                                                      | To<br>Hy                                                                    | study E<br>drazy) s                | lectron Spin (ESR) Resonance in DPPH (Diphenyl Pricyl ample.                           |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 3.                                                                                                                                      | To<br>effi                                                                  | study I-<br>iciency.               | V characteristics of photovoltaic solar cell and find the                              |  |  |  |  |  |  |
|                                                                                                  | <ol> <li>To study the decay of photoconductivity of given sample and find out<br/>trap depth.</li> <li>Study of decay of photoluminescence of a given sample.</li> <li>Measurement of electrical conductivity using Impedance Spectroscop<br/>technique.</li> </ol> |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | <ol> <li>To determine drift velocities of Ag+ ion in AgI from temperature<br/>dependence of ionic transference number study.</li> </ol> |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
| Course<br>Content                                                                                | 8. Electrical conductivity of Ball milled/Mechano-chemical synthesize materials.                                                                                                                                                                                    |                                                                                                                                         |                                                                             |                                    | onductivity of Ball milled/Mechano-chemical synthesized                                |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 9. Determination of strength of a given radioactive source.                                                                             |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  | 10. Study of complete spectra of radioactive sources, and study of pho<br>peak efficiency of NaI (Tl) crystal for different energy gamma ray                                                                                                                        |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
| 11. Structural analysis of powder sample by XRD and part determination using Scherrer's formula. |                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                             |                                    | analysis of powder sample by XRD and particle size on using Scherrer's formula.        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                         |                                                                             | 12. FTIR studies of solid samples. |                                                                                        |  |  |  |  |  |  |
|                                                                                                  | 13. Mechanoluminescence of sucrose crystals.                                                                                                                                                                                                                        |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  | 14. Thermoluminescence of irradiated samples.                                                                                                                                                                                                                       |                                                                                                                                         |                                                                             |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 15.                                                                                                                                     | p-Amp IC-741 is inverting/ Non inverting amplifier and draw response curve. |                                    |                                                                                        |  |  |  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                     | 16.                                                                                                                                     | Co<br>cha                                                                   | nstructio                          | on of Schmitt triggers using IC-741 and study of its ics.                              |  |  |  |  |  |  |



| A BRATT STORE STATE |                                                                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 17. Study of Astable and monostable Multi Vibrator using IC 555.                                                                            |
|                     | 18. Digital electronics experiments on bread board using IC-7400.                                                                           |
| Course<br>Outcome   | • On the completion of this course lab, successfully student will be able to understand the development of the Materials Science & General. |
| Text Books          | 1. Introduction to Physics Lab - H.E. White(T).                                                                                             |
|                     | 2. Fundamentals of Physics Lab – C.N. Banwell and E.M. McCash(T).                                                                           |
| References<br>Books | <ol> <li>Introduction to Physics Lab – J.M. Brown.</li> <li>Fundamentals of Physics Lab –P.F. Bemath.</li> </ol>                            |